If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x+5=0
a = 4; b = 20; c = +5;
Δ = b2-4ac
Δ = 202-4·4·5
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{5}}{2*4}=\frac{-20-8\sqrt{5}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{5}}{2*4}=\frac{-20+8\sqrt{5}}{8} $
| (3x-2)+3=21 | | x/(x+1)=0.23 | | 5x+1=3x+10= | | 16+x-61=43 | | 20+5x=3x+10,x/10+10= | | 7x-6=4x,0,1x+10= | | 8x+6=6+4x,6x-20= | | x+4=5+2x,4-25x= | | 2x=25-3x,3x-6= | | 2x=25-3x,3x-6 | | 2*m+14=34 | | 20x-5=-13×-15 | | 7.x-154=-3.x-54 | | 2.x+9=5.x+105 | | -4.x-28=24 | | x³+x-7=2x-3 | | 3p8=9 | | 2+1/6a=–4 | | X°,2x°,3x°,5x°,9x°,10x°= | | 1.5^x+3x+7=5x-8 | | 2×-5y=-1 | | 3b-18-b=-b-3 | | 13x+9=(8x+7)+(4x+11) | | 12x+10=(6x+7)+(5x+14) | | _x-7.5=-43.5 | | (D^4+D^3-6D^2-28D)y=0 | | 5×11+4y÷3+3y+1=0 | | 7(2-3D)=19+5d | | 9x-90=63 | | 20+3x=53x= | | M1=13x+9 | | x+12/100=16 |